
Web applications are often targeted by attackers due to their exposure on the internet. The 
most dangerous vulnerabilities are categorized by organizations like OWASP (Open Web 
Application Security Project). Here are the top vulnerabilities that can severely impact web 
applications: 

 

🔥 1. Injection Attacks (SQL, NoSQL, Command, etc.) 

● Description: Attackers inject malicious code into input fields, which gets executed by the 
database or system. 

● Impact: Data leaks, unauthorized access, full system compromise. 
● Example: SQL Injection (' OR 1=1 -- to bypass login authentication). 

 

🚨 2. Broken Authentication & Session Management 

● Description: Weak authentication mechanisms allow attackers to take over user 
accounts. 

● Impact: Account takeover, identity theft, privilege escalation. 
● Example: Using default passwords, missing multi-factor authentication (MFA). 

 

🔑 3. Sensitive Data Exposure 

● Description: Web applications fail to protect sensitive user data like passwords, credit 
card details, or personal information. 

● Impact: Data breaches, financial fraud, identity theft. 
● Example: Storing passwords in plaintext, missing HTTPS. 

 

🛡 4. Security Misconfiguration 

● Description: Default settings, exposed error messages, and unnecessary services 
make applications vulnerable. 

● Impact: Attackers can exploit misconfigurations to gain access or escalate privileges. 
● Example: Leaving default admin passwords enabled, detailed error messages revealing 

system info. 

 

🔄 5. Cross-Site Scripting (XSS) 



● Description: Malicious JavaScript is injected into a website, affecting users who visit it. 
● Impact: Account hijacking, session theft, phishing attacks. 
● Example: <script>alert('XSS Attack!')</script> executing on a victim’s 

browser. 

 

🔌 6. Insecure Deserialization 

● Description: Untrusted data is deserialized, allowing attackers to execute malicious 
code. 

● Impact: Remote code execution, privilege escalation. 
● Example: Tampering with serialized session tokens to gain admin access. 

 

🔄 7. Cross-Site Request Forgery (CSRF) 

● Description: Tricks authenticated users into performing actions without their consent. 
● Impact: Fund transfers, password changes, unauthorized actions. 
● Example: Hidden form submission forcing users to transfer money. 

 

⚠ 8. Insufficient Logging & Monitoring 

● Description: Lack of proper logs and alerts makes it difficult to detect and respond to 
attacks. 

● Impact: Attackers remain undetected for a long time, increasing damage. 
● Example: No logs of failed login attempts or unauthorized API access. 

 

🏗 9. Server-Side Request Forgery (SSRF) 

● Description: Attackers make a vulnerable server send requests to internal systems or 
third-party services. 

● Impact: Internal network access, cloud metadata exposure, remote file inclusion. 
● Example: Fetching internal resources like http://localhost/admin. 

 

🔥 10. Broken Access Control 

● Description: Users can access restricted areas due to improper authorization checks. 



● Impact: Unauthorized data modification, privilege escalation. 
● Example: Changing user roles via API (PUT /user/1 {"role": "admin"}). 

 

🚧 How to Protect Your Web Applications? 

✅ Use parameterized queries to prevent SQL injection. 
 ✅ Implement strong authentication (MFA, secure password storage). 
 ✅ Encrypt sensitive data in transit and at rest. 
 ✅ Validate user inputs to prevent XSS & injection attacks. 
 ✅ Use secure headers like Content-Security-Policy (CSP). 
 ✅ Enforce least privilege access to users and services. 
 ✅ Enable proper logging & monitoring for attack detection. 

Would you like help scanning your web application for vulnerabilities? 🚀 

 


	🔥 1. Injection Attacks (SQL, NoSQL, Command, etc.) 
	🚨 2. Broken Authentication & Session Management 
	🔑 3. Sensitive Data Exposure 
	🛡 4. Security Misconfiguration 
	🔄 5. Cross-Site Scripting (XSS) 
	🔌 6. Insecure Deserialization 
	🔄 7. Cross-Site Request Forgery (CSRF) 
	⚠️ 8. Insufficient Logging & Monitoring 
	🏗 9. Server-Side Request Forgery (SSRF) 
	🔥 10. Broken Access Control 
	🚧 How to Protect Your Web Applications? 

